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SEE Effects in Operational Spacecraft

 “Safehold” Condition in DS-1 Shortly after Launch

 Multiple-Bit Errors in Cassini Solid-State Recorder

– Occurred even though extensive testing was done during design
phase

– Attributed to system architectural flaw

 Inadvertent Switching of Cassini Power Modules to Standby Mode

– Caused by transients from PM139 comparator
– Low probability because of high input voltage used in design
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Single-Event Upset

 First Observed in Bipolar Flip-Flops in 1979
– Original work treated with skepticism
– SEU has emerged as one of the major issues for application of

microelectronics in space
 Previous JPL Missions Have Struggled with SEU Problems

– Galileo used a 2901 bit-slice microprocessor (bipolar technology)
– Initial testing showed SEU susceptibility, at moderate rate
– Subsequent die design changes increased the SEU rate beyond

the point where the device was useable
– Sandia National Laboratory designed a special rad-hard CMOS

version that was used on the spacecraft
 SEU Effects Have Become Worse as Devices Have Evolved

– Lower “critical charge” because of small device dimensions
– Large numbers of transistors per chip and overall complexity
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Cassini SSR Errors During Solar Flare
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Overview

 How storage elements are upset
– SRAM
– DRAM

 What are “cross-section” and “L.E.T.”

 How space upset rates are calculated

 Upset mitigation techniques

 Other effects
– SEFI
– Transients
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Ion Strike on a p-n Junction
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How  an SRAM Cell Upsets

Ion strike on or
near transistor
will change bit
state
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What is LET?

Measure of energy deposition in a material
- for example: silicon

Linear Energy Transfer

Units are MeV per mg/cm2 (energy per areal density)

Proportional to MeV/µ or pC/µ



29

What is Cross Section?

Measure Of Susceptibility

Units = area (cm2 or µ2)

Dart Board Analogy
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Upset Mechanism for DRAMs
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Single-Event Upset in 64-Mb DRAMs
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Upset from Protons

 Proton LET Is Extremely Low
– Proton upset is usually dominated by nuclear reactions
– Secondary reaction products have much higher LET, but have short

ranges compared to galactic cosmic rays
 Proton Testing Provides only Limited Information about SEE

Sensitivity
– “Effective” LET of protons is 3-12 MeV-cm2/mg
– Depends on device construction

 Significance of Proton Upset
– Important because protons can make a large contribution to the

overall upset rate (particularly for low earth orbits)
– Proton testing is cheaper and easier than tests with heavy ions
– In many cases proton test data may be the only available

information
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Proton Recoil Distribution in a Surface Barrier Detector
that Is 50 µm Thick
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How Space Upset Rates Are Calculated

 Measure σ vs. LET
– Testing done at high-energy

accelerator
– Cross-section determined from

circuit response

 Determine Sensitive Volume
– Requires assumptions about

device construction
– Used to determine effect of ions

that strike the device at an angle

 Integrate with LET Spectrum
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Dependence of Cross Section on Stopping Power
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SEU Rates
 (Interplanetary Space)
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Dependence of PC603e Cross Section on Test Method
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Hamming Codes

“SECDED” = Single Error Correction
                      Double error Detection

- example:  (39, 32) = 32 data bits + 7 parity

“DECTED” = Double Error Correction
                      Triple Error Detection

- example: (79, 64) = 64 data bits + 15 parity

EDAC word error rate is approximately one half of:
              
                                Tscrub      U2

NEDAC
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EDAC Issues

 Error-detection-and-correction
– Used in solid-state recorders on many JPL spacecraft
– Different levels of correction, depending on algorithm

• Single and double bit detection, with single-bit correction
• Double bit detection and correction (larger word size)

 EDAC algorithms can fail at high rates
– Solar flares
– Transitions through radiation belts
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Multiple Bit Upsets in OKI DRAM
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Cassini SSR Architectural Flaw
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Functional Interrupt Effect (“SEFI”)
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Circuit Technologies where SEFI Is Important

 Advanced Memories
– Internal test modes
– Microprogrammed cell architecture

 Flash Memories
– Dominant effect
– “Crashes” internal state controller and buffers

 Xilinx Programmable Logic Arrays

 Microprocessors
– Many categories of responses
– Detection and recovery are very difficult problems
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Non-Recoverable Errors in the 486 Processor
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Cross Section for Transients in the PM139 Comparator
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Calculated Upset Rate for Cassini Power Modules

 Assumed     Aspect  Errors per
Environment      Ratio         Switch-Day

   GCR,   5:1 4.5 x 10-5
solar minimum

   GCR,   5:1 8.2 x 10-6
solar maximum

Design-case 5:1 1.6 x 10-2
solar flare
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SEE Testing

Why so expensive?

Remote, Expensive Facilities (Accelerators)

Test Development

Special Problems
-  Part De-lidding
-  In Vacuum Operation
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Toshiba Angle Plot
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Summary

 SEE Effects Are an Important Issue for All Spacecraft
 Testing and Evaluation of the Impact of SEE Is a Complex

Problem
– Few problems with older spacecraft because of thorough testing
– Likely to become more severe for newer technologies

 Section 514 Continually Evaluates SEE Effects
– Direct Support to Many JPL Programs
– Testing of Advance Microprocessors for REE
– Evaluation of Advanced Devices under the NEPP Program


